extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×D12)⋊1C22 = S3×D24 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 4+ | (C3xD12):1C2^2 | 288,441 |
(C3×D12)⋊2C22 = D24⋊S3 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 4 | (C3xD12):2C2^2 | 288,443 |
(C3×D12)⋊3C22 = C24⋊4D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 4 | (C3xD12):3C2^2 | 288,445 |
(C3×D12)⋊4C22 = C24⋊6D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 4 | (C3xD12):4C2^2 | 288,446 |
(C3×D12)⋊5C22 = S3×D4⋊S3 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8+ | (C3xD12):5C2^2 | 288,572 |
(C3×D12)⋊6C22 = D12⋊D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 24 | 8+ | (C3xD12):6C2^2 | 288,574 |
(C3×D12)⋊7C22 = D12⋊9D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8- | (C3xD12):7C2^2 | 288,580 |
(C3×D12)⋊8C22 = D12⋊5D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 24 | 8+ | (C3xD12):8C2^2 | 288,585 |
(C3×D12)⋊9C22 = D12⋊6D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8+ | (C3xD12):9C2^2 | 288,587 |
(C3×D12)⋊10C22 = C3×S3×D8 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 4 | (C3xD12):10C2^2 | 288,681 |
(C3×D12)⋊11C22 = C3×Q8⋊3D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 4 | (C3xD12):11C2^2 | 288,685 |
(C3×D12)⋊12C22 = S32×D4 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 24 | 8+ | (C3xD12):12C2^2 | 288,958 |
(C3×D12)⋊13C22 = S3×D4⋊2S3 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8- | (C3xD12):13C2^2 | 288,959 |
(C3×D12)⋊14C22 = D12⋊12D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8- | (C3xD12):14C2^2 | 288,961 |
(C3×D12)⋊15C22 = D12⋊13D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 24 | 8+ | (C3xD12):15C2^2 | 288,962 |
(C3×D12)⋊16C22 = S3×Q8⋊3S3 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8+ | (C3xD12):16C2^2 | 288,966 |
(C3×D12)⋊17C22 = D12⋊15D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8- | (C3xD12):17C2^2 | 288,967 |
(C3×D12)⋊18C22 = D12⋊16D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8+ | (C3xD12):18C2^2 | 288,968 |
(C3×D12)⋊19C22 = C2×C32⋊2D8 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 96 | | (C3xD12):19C2^2 | 288,469 |
(C3×D12)⋊20C22 = D12⋊20D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12):20C2^2 | 288,471 |
(C3×D12)⋊21C22 = C2×C3⋊D24 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | | (C3xD12):21C2^2 | 288,472 |
(C3×D12)⋊22C22 = D12⋊18D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 24 | 4+ | (C3xD12):22C2^2 | 288,473 |
(C3×D12)⋊23C22 = C6×D4⋊S3 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | | (C3xD12):23C2^2 | 288,702 |
(C3×D12)⋊24C22 = C3×D12⋊6C22 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 24 | 4 | (C3xD12):24C2^2 | 288,703 |
(C3×D12)⋊25C22 = C2×D12⋊5S3 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 96 | | (C3xD12):25C2^2 | 288,943 |
(C3×D12)⋊26C22 = C2×D12⋊S3 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | | (C3xD12):26C2^2 | 288,944 |
(C3×D12)⋊27C22 = C2×S3×D12 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | | (C3xD12):27C2^2 | 288,951 |
(C3×D12)⋊28C22 = C2×D6⋊D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | | (C3xD12):28C2^2 | 288,952 |
(C3×D12)⋊29C22 = S3×C4○D12 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12):29C2^2 | 288,953 |
(C3×D12)⋊30C22 = D12⋊23D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 24 | 4 | (C3xD12):30C2^2 | 288,954 |
(C3×D12)⋊31C22 = D12⋊24D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12):31C2^2 | 288,955 |
(C3×D12)⋊32C22 = D12⋊27D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 24 | 4+ | (C3xD12):32C2^2 | 288,956 |
(C3×D12)⋊33C22 = S3×C6×D4 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | | (C3xD12):33C2^2 | 288,992 |
(C3×D12)⋊34C22 = C3×D4⋊6D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 24 | 4 | (C3xD12):34C2^2 | 288,994 |
(C3×D12)⋊35C22 = C6×Q8⋊3S3 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 96 | | (C3xD12):35C2^2 | 288,996 |
(C3×D12)⋊36C22 = C3×S3×C4○D4 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12):36C2^2 | 288,998 |
(C3×D12)⋊37C22 = C3×D4○D12 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12):37C2^2 | 288,999 |
(C3×D12)⋊38C22 = C6×D24 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 96 | | (C3xD12):38C2^2 | 288,674 |
(C3×D12)⋊39C22 = C3×C8⋊D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12):39C2^2 | 288,679 |
(C3×D12)⋊40C22 = C6×C4○D12 | φ: trivial image | 48 | | (C3xD12):40C2^2 | 288,991 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×D12).1C22 = S3×C24⋊C2 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).1C2^2 | 288,440 |
(C3×D12).2C22 = C24⋊1D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 4+ | (C3xD12).2C2^2 | 288,442 |
(C3×D12).3C22 = C24⋊9D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).3C2^2 | 288,444 |
(C3×D12).4C22 = C24.3D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 96 | 4- | (C3xD12).4C2^2 | 288,448 |
(C3×D12).5C22 = D6.1D12 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).5C2^2 | 288,454 |
(C3×D12).6C22 = D24⋊7S3 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 96 | 4- | (C3xD12).6C2^2 | 288,455 |
(C3×D12).7C22 = D12.2D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).7C2^2 | 288,457 |
(C3×D12).8C22 = D24⋊5S3 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).8C2^2 | 288,458 |
(C3×D12).9C22 = D12.4D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).9C2^2 | 288,459 |
(C3×D12).10C22 = Dic6⋊3D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8+ | (C3xD12).10C2^2 | 288,573 |
(C3×D12).11C22 = D12.D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8- | (C3xD12).11C2^2 | 288,575 |
(C3×D12).12C22 = S3×D4.S3 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8- | (C3xD12).12C2^2 | 288,576 |
(C3×D12).13C22 = D12.22D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8- | (C3xD12).13C2^2 | 288,581 |
(C3×D12).14C22 = D12.7D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8+ | (C3xD12).14C2^2 | 288,582 |
(C3×D12).15C22 = D12.8D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8- | (C3xD12).15C2^2 | 288,584 |
(C3×D12).16C22 = S3×Q8⋊2S3 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8+ | (C3xD12).16C2^2 | 288,586 |
(C3×D12).17C22 = D12.9D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8- | (C3xD12).17C2^2 | 288,588 |
(C3×D12).18C22 = D12.10D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8+ | (C3xD12).18C2^2 | 288,589 |
(C3×D12).19C22 = D12.11D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 96 | 8- | (C3xD12).19C2^2 | 288,591 |
(C3×D12).20C22 = D12.24D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 96 | 8- | (C3xD12).20C2^2 | 288,594 |
(C3×D12).21C22 = D12.12D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 96 | 8- | (C3xD12).21C2^2 | 288,595 |
(C3×D12).22C22 = D12.13D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8+ | (C3xD12).22C2^2 | 288,597 |
(C3×D12).23C22 = D12.14D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8+ | (C3xD12).23C2^2 | 288,598 |
(C3×D12).24C22 = D12.15D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8- | (C3xD12).24C2^2 | 288,599 |
(C3×D12).25C22 = C3×D8⋊S3 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).25C2^2 | 288,682 |
(C3×D12).26C22 = C3×S3×SD16 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).26C2^2 | 288,684 |
(C3×D12).27C22 = C3×Q8.7D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).27C2^2 | 288,687 |
(C3×D12).28C22 = C3×Q16⋊S3 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 96 | 4 | (C3xD12).28C2^2 | 288,689 |
(C3×D12).29C22 = C3×D24⋊C2 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 96 | 4 | (C3xD12).29C2^2 | 288,690 |
(C3×D12).30C22 = D12.25D6 | φ: C22/C1 → C22 ⊆ Out C3×D12 | 48 | 8- | (C3xD12).30C2^2 | 288,963 |
(C3×D12).31C22 = D12.30D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).31C2^2 | 288,470 |
(C3×D12).32C22 = C2×Dic6⋊S3 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 96 | | (C3xD12).32C2^2 | 288,474 |
(C3×D12).33C22 = D12.32D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).33C2^2 | 288,475 |
(C3×D12).34C22 = C2×D12.S3 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 96 | | (C3xD12).34C2^2 | 288,476 |
(C3×D12).35C22 = D12.27D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).35C2^2 | 288,477 |
(C3×D12).36C22 = D12.28D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).36C2^2 | 288,478 |
(C3×D12).37C22 = D12.29D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 4- | (C3xD12).37C2^2 | 288,479 |
(C3×D12).38C22 = C6×Q8⋊2S3 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 96 | | (C3xD12).38C2^2 | 288,712 |
(C3×D12).39C22 = C3×Q8.11D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).39C2^2 | 288,713 |
(C3×D12).40C22 = C3×D4⋊D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).40C2^2 | 288,720 |
(C3×D12).41C22 = C3×Q8.13D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).41C2^2 | 288,721 |
(C3×D12).42C22 = D12.33D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).42C2^2 | 288,945 |
(C3×D12).43C22 = D12.34D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 4- | (C3xD12).43C2^2 | 288,946 |
(C3×D12).44C22 = C3×Q8.15D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).44C2^2 | 288,997 |
(C3×D12).45C22 = C6×C24⋊C2 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 96 | | (C3xD12).45C2^2 | 288,673 |
(C3×D12).46C22 = C3×C4○D24 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 2 | (C3xD12).46C2^2 | 288,675 |
(C3×D12).47C22 = C3×C8.D6 | φ: C22/C2 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).47C2^2 | 288,680 |
(C3×D12).48C22 = C3×Q8○D12 | φ: trivial image | 48 | 4 | (C3xD12).48C2^2 | 288,1000 |