Extensions 1→N→G→Q→1 with N=C3×D12 and Q=C22

Direct product G=N×Q with N=C3×D12 and Q=C22
dρLabelID
C2×C6×D1296C2xC6xD12288,990

Semidirect products G=N:Q with N=C3×D12 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3×D12)⋊1C22 = S3×D24φ: C22/C1C22 ⊆ Out C3×D12484+(C3xD12):1C2^2288,441
(C3×D12)⋊2C22 = D24⋊S3φ: C22/C1C22 ⊆ Out C3×D12484(C3xD12):2C2^2288,443
(C3×D12)⋊3C22 = C244D6φ: C22/C1C22 ⊆ Out C3×D12484(C3xD12):3C2^2288,445
(C3×D12)⋊4C22 = C246D6φ: C22/C1C22 ⊆ Out C3×D12484(C3xD12):4C2^2288,446
(C3×D12)⋊5C22 = S3×D4⋊S3φ: C22/C1C22 ⊆ Out C3×D12488+(C3xD12):5C2^2288,572
(C3×D12)⋊6C22 = D12⋊D6φ: C22/C1C22 ⊆ Out C3×D12248+(C3xD12):6C2^2288,574
(C3×D12)⋊7C22 = D129D6φ: C22/C1C22 ⊆ Out C3×D12488-(C3xD12):7C2^2288,580
(C3×D12)⋊8C22 = D125D6φ: C22/C1C22 ⊆ Out C3×D12248+(C3xD12):8C2^2288,585
(C3×D12)⋊9C22 = D126D6φ: C22/C1C22 ⊆ Out C3×D12488+(C3xD12):9C2^2288,587
(C3×D12)⋊10C22 = C3×S3×D8φ: C22/C1C22 ⊆ Out C3×D12484(C3xD12):10C2^2288,681
(C3×D12)⋊11C22 = C3×Q83D6φ: C22/C1C22 ⊆ Out C3×D12484(C3xD12):11C2^2288,685
(C3×D12)⋊12C22 = S32×D4φ: C22/C1C22 ⊆ Out C3×D12248+(C3xD12):12C2^2288,958
(C3×D12)⋊13C22 = S3×D42S3φ: C22/C1C22 ⊆ Out C3×D12488-(C3xD12):13C2^2288,959
(C3×D12)⋊14C22 = D1212D6φ: C22/C1C22 ⊆ Out C3×D12488-(C3xD12):14C2^2288,961
(C3×D12)⋊15C22 = D1213D6φ: C22/C1C22 ⊆ Out C3×D12248+(C3xD12):15C2^2288,962
(C3×D12)⋊16C22 = S3×Q83S3φ: C22/C1C22 ⊆ Out C3×D12488+(C3xD12):16C2^2288,966
(C3×D12)⋊17C22 = D1215D6φ: C22/C1C22 ⊆ Out C3×D12488-(C3xD12):17C2^2288,967
(C3×D12)⋊18C22 = D1216D6φ: C22/C1C22 ⊆ Out C3×D12488+(C3xD12):18C2^2288,968
(C3×D12)⋊19C22 = C2×C322D8φ: C22/C2C2 ⊆ Out C3×D1296(C3xD12):19C2^2288,469
(C3×D12)⋊20C22 = D1220D6φ: C22/C2C2 ⊆ Out C3×D12484(C3xD12):20C2^2288,471
(C3×D12)⋊21C22 = C2×C3⋊D24φ: C22/C2C2 ⊆ Out C3×D1248(C3xD12):21C2^2288,472
(C3×D12)⋊22C22 = D1218D6φ: C22/C2C2 ⊆ Out C3×D12244+(C3xD12):22C2^2288,473
(C3×D12)⋊23C22 = C6×D4⋊S3φ: C22/C2C2 ⊆ Out C3×D1248(C3xD12):23C2^2288,702
(C3×D12)⋊24C22 = C3×D126C22φ: C22/C2C2 ⊆ Out C3×D12244(C3xD12):24C2^2288,703
(C3×D12)⋊25C22 = C2×D125S3φ: C22/C2C2 ⊆ Out C3×D1296(C3xD12):25C2^2288,943
(C3×D12)⋊26C22 = C2×D12⋊S3φ: C22/C2C2 ⊆ Out C3×D1248(C3xD12):26C2^2288,944
(C3×D12)⋊27C22 = C2×S3×D12φ: C22/C2C2 ⊆ Out C3×D1248(C3xD12):27C2^2288,951
(C3×D12)⋊28C22 = C2×D6⋊D6φ: C22/C2C2 ⊆ Out C3×D1248(C3xD12):28C2^2288,952
(C3×D12)⋊29C22 = S3×C4○D12φ: C22/C2C2 ⊆ Out C3×D12484(C3xD12):29C2^2288,953
(C3×D12)⋊30C22 = D1223D6φ: C22/C2C2 ⊆ Out C3×D12244(C3xD12):30C2^2288,954
(C3×D12)⋊31C22 = D1224D6φ: C22/C2C2 ⊆ Out C3×D12484(C3xD12):31C2^2288,955
(C3×D12)⋊32C22 = D1227D6φ: C22/C2C2 ⊆ Out C3×D12244+(C3xD12):32C2^2288,956
(C3×D12)⋊33C22 = S3×C6×D4φ: C22/C2C2 ⊆ Out C3×D1248(C3xD12):33C2^2288,992
(C3×D12)⋊34C22 = C3×D46D6φ: C22/C2C2 ⊆ Out C3×D12244(C3xD12):34C2^2288,994
(C3×D12)⋊35C22 = C6×Q83S3φ: C22/C2C2 ⊆ Out C3×D1296(C3xD12):35C2^2288,996
(C3×D12)⋊36C22 = C3×S3×C4○D4φ: C22/C2C2 ⊆ Out C3×D12484(C3xD12):36C2^2288,998
(C3×D12)⋊37C22 = C3×D4○D12φ: C22/C2C2 ⊆ Out C3×D12484(C3xD12):37C2^2288,999
(C3×D12)⋊38C22 = C6×D24φ: C22/C2C2 ⊆ Out C3×D1296(C3xD12):38C2^2288,674
(C3×D12)⋊39C22 = C3×C8⋊D6φ: C22/C2C2 ⊆ Out C3×D12484(C3xD12):39C2^2288,679
(C3×D12)⋊40C22 = C6×C4○D12φ: trivial image48(C3xD12):40C2^2288,991

Non-split extensions G=N.Q with N=C3×D12 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3×D12).1C22 = S3×C24⋊C2φ: C22/C1C22 ⊆ Out C3×D12484(C3xD12).1C2^2288,440
(C3×D12).2C22 = C241D6φ: C22/C1C22 ⊆ Out C3×D12484+(C3xD12).2C2^2288,442
(C3×D12).3C22 = C249D6φ: C22/C1C22 ⊆ Out C3×D12484(C3xD12).3C2^2288,444
(C3×D12).4C22 = C24.3D6φ: C22/C1C22 ⊆ Out C3×D12964-(C3xD12).4C2^2288,448
(C3×D12).5C22 = D6.1D12φ: C22/C1C22 ⊆ Out C3×D12484(C3xD12).5C2^2288,454
(C3×D12).6C22 = D247S3φ: C22/C1C22 ⊆ Out C3×D12964-(C3xD12).6C2^2288,455
(C3×D12).7C22 = D12.2D6φ: C22/C1C22 ⊆ Out C3×D12484(C3xD12).7C2^2288,457
(C3×D12).8C22 = D245S3φ: C22/C1C22 ⊆ Out C3×D12484(C3xD12).8C2^2288,458
(C3×D12).9C22 = D12.4D6φ: C22/C1C22 ⊆ Out C3×D12484(C3xD12).9C2^2288,459
(C3×D12).10C22 = Dic63D6φ: C22/C1C22 ⊆ Out C3×D12488+(C3xD12).10C2^2288,573
(C3×D12).11C22 = D12.D6φ: C22/C1C22 ⊆ Out C3×D12488-(C3xD12).11C2^2288,575
(C3×D12).12C22 = S3×D4.S3φ: C22/C1C22 ⊆ Out C3×D12488-(C3xD12).12C2^2288,576
(C3×D12).13C22 = D12.22D6φ: C22/C1C22 ⊆ Out C3×D12488-(C3xD12).13C2^2288,581
(C3×D12).14C22 = D12.7D6φ: C22/C1C22 ⊆ Out C3×D12488+(C3xD12).14C2^2288,582
(C3×D12).15C22 = D12.8D6φ: C22/C1C22 ⊆ Out C3×D12488-(C3xD12).15C2^2288,584
(C3×D12).16C22 = S3×Q82S3φ: C22/C1C22 ⊆ Out C3×D12488+(C3xD12).16C2^2288,586
(C3×D12).17C22 = D12.9D6φ: C22/C1C22 ⊆ Out C3×D12488-(C3xD12).17C2^2288,588
(C3×D12).18C22 = D12.10D6φ: C22/C1C22 ⊆ Out C3×D12488+(C3xD12).18C2^2288,589
(C3×D12).19C22 = D12.11D6φ: C22/C1C22 ⊆ Out C3×D12968-(C3xD12).19C2^2288,591
(C3×D12).20C22 = D12.24D6φ: C22/C1C22 ⊆ Out C3×D12968-(C3xD12).20C2^2288,594
(C3×D12).21C22 = D12.12D6φ: C22/C1C22 ⊆ Out C3×D12968-(C3xD12).21C2^2288,595
(C3×D12).22C22 = D12.13D6φ: C22/C1C22 ⊆ Out C3×D12488+(C3xD12).22C2^2288,597
(C3×D12).23C22 = D12.14D6φ: C22/C1C22 ⊆ Out C3×D12488+(C3xD12).23C2^2288,598
(C3×D12).24C22 = D12.15D6φ: C22/C1C22 ⊆ Out C3×D12488-(C3xD12).24C2^2288,599
(C3×D12).25C22 = C3×D8⋊S3φ: C22/C1C22 ⊆ Out C3×D12484(C3xD12).25C2^2288,682
(C3×D12).26C22 = C3×S3×SD16φ: C22/C1C22 ⊆ Out C3×D12484(C3xD12).26C2^2288,684
(C3×D12).27C22 = C3×Q8.7D6φ: C22/C1C22 ⊆ Out C3×D12484(C3xD12).27C2^2288,687
(C3×D12).28C22 = C3×Q16⋊S3φ: C22/C1C22 ⊆ Out C3×D12964(C3xD12).28C2^2288,689
(C3×D12).29C22 = C3×D24⋊C2φ: C22/C1C22 ⊆ Out C3×D12964(C3xD12).29C2^2288,690
(C3×D12).30C22 = D12.25D6φ: C22/C1C22 ⊆ Out C3×D12488-(C3xD12).30C2^2288,963
(C3×D12).31C22 = D12.30D6φ: C22/C2C2 ⊆ Out C3×D12484(C3xD12).31C2^2288,470
(C3×D12).32C22 = C2×Dic6⋊S3φ: C22/C2C2 ⊆ Out C3×D1296(C3xD12).32C2^2288,474
(C3×D12).33C22 = D12.32D6φ: C22/C2C2 ⊆ Out C3×D12484(C3xD12).33C2^2288,475
(C3×D12).34C22 = C2×D12.S3φ: C22/C2C2 ⊆ Out C3×D1296(C3xD12).34C2^2288,476
(C3×D12).35C22 = D12.27D6φ: C22/C2C2 ⊆ Out C3×D12484(C3xD12).35C2^2288,477
(C3×D12).36C22 = D12.28D6φ: C22/C2C2 ⊆ Out C3×D12484(C3xD12).36C2^2288,478
(C3×D12).37C22 = D12.29D6φ: C22/C2C2 ⊆ Out C3×D12484-(C3xD12).37C2^2288,479
(C3×D12).38C22 = C6×Q82S3φ: C22/C2C2 ⊆ Out C3×D1296(C3xD12).38C2^2288,712
(C3×D12).39C22 = C3×Q8.11D6φ: C22/C2C2 ⊆ Out C3×D12484(C3xD12).39C2^2288,713
(C3×D12).40C22 = C3×D4⋊D6φ: C22/C2C2 ⊆ Out C3×D12484(C3xD12).40C2^2288,720
(C3×D12).41C22 = C3×Q8.13D6φ: C22/C2C2 ⊆ Out C3×D12484(C3xD12).41C2^2288,721
(C3×D12).42C22 = D12.33D6φ: C22/C2C2 ⊆ Out C3×D12484(C3xD12).42C2^2288,945
(C3×D12).43C22 = D12.34D6φ: C22/C2C2 ⊆ Out C3×D12484-(C3xD12).43C2^2288,946
(C3×D12).44C22 = C3×Q8.15D6φ: C22/C2C2 ⊆ Out C3×D12484(C3xD12).44C2^2288,997
(C3×D12).45C22 = C6×C24⋊C2φ: C22/C2C2 ⊆ Out C3×D1296(C3xD12).45C2^2288,673
(C3×D12).46C22 = C3×C4○D24φ: C22/C2C2 ⊆ Out C3×D12482(C3xD12).46C2^2288,675
(C3×D12).47C22 = C3×C8.D6φ: C22/C2C2 ⊆ Out C3×D12484(C3xD12).47C2^2288,680
(C3×D12).48C22 = C3×Q8○D12φ: trivial image484(C3xD12).48C2^2288,1000

׿
×
𝔽